MICROBIOMA INTESTINAL: SEU POTENCIAL COMO UM NOVO ALVO TERAPÊUTICO

Autores

  • Maurilia de Cássia Magalhães Discente do Curso de Farmácia da Universidade São Francisco https://orcid.org/0000-0002-7424-2331
  • Aline Tengan Roque Discente do Curso de Farmácia da Universidade São Francisco
  • Natália Franco Taketani Docente do Curso de Farmácia da Universidade São Francisco Mentora Intelectual

DOI:

https://doi.org/10.24933/eusf.v2i2.120

Resumo

A evolução no campo da genômica e áreas afins nos últimos anos vêm permitindo estudos cada vez mais detalhados do microbioma humano. O trato gastrointestinal, mais precisamente o intestino, é o local que apresenta uma maior quantidade e diversidade de microrganismos, sofrendo então grande influência para a manutenção da homeostase, deste modo, nessa revisão procuramos resumir literaturas recentes sobre o microbioma intestinal e evidência de como sua composição no hospedeiro pode influenciar o seu metabolismo e a ocorrência de algumas doenças crônicas não transmissíveis, com elevada prevalência na população atual. O microbioma intestinal pode ser um importante intermediário entre a saúde e bem estar do hospedeiro quando em equilíbrio, podendo vir a atuar como um coadjuvante no tratamento e prevenção de determinadas patologias, é notável que a prevalência de bactérias patogênicas gastrointestinais, causará um desgaste nas interações consideradas benéficas, levando o indivíduo ao estado patológico.

Downloads

Não há dados estatísticos.

Referências

ADAMS, J. B. et al. Gastrointestinal flora and gastrointestinal status in children with autism - comparisons to typical children and correlation with autism severity. BMC Gastroenterology, v. 11, n. 1, p. 22, 2011.

AIT-BELGNAOUI, A. et al. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterology and Motility, v. 26, n. 4, p. 510–520, 2014.

BÄCKHED, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, v. 101, n. 44, p. 15718–23, 2004.

BÄCKHED, F. et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences, v. 104, n. 3, p. 979–984, 2007.

BELKAID, Y.; NAIK, S. Compartmentalized and systemic control of tissue immunity by commensals. Nature Immunology, v. 14, n. 7, p. 646–653, 2013.

BELL, D. S. H. Changes seen in gut bacteria content and distribution with obesity: Causation or association? Postgraduate Medicine, v. 127, n. 8, p. 863–868, 2015.

BELMAKER, R. H.; AGAM, G. Major Depressive Disorder. The new england journal o f medicine, 2008.

BERCIK, P. et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterology and Motility, v. 23, n. 12, p. 1132–1139, 2011.

BERCIK, P.; COLLINS, S. M.; VERDU, E. F. Microbes and the gut-brain axis. Neurogastroenterology and Motility, v. 24, n. 5, p. 405–413, 2012.

BIENENSTOCK, J.; KUNZE, W.; FORSYTHE, P. The Microbiome–Gut–Brain Axis and the Consequences of Infection and Dysbiosis. The American Journal of Gastroenterology Supplements, v. 3, n. 2, p. 33–40, 2016.

BONAZ, B.; BAZIN, T.; PELLISSIER, S. The vagus nerve at the interface of the microbiota-gut-brain axis. Frontiers in Neuroscience, v. 12, n. FEB, p. 1–9, 2018.

BRAVO, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, v. 108, n. 38, p. 16050–16055, 2011.

BRIEN, S. M. O.; SCOTT, L. V; DINAN, T. G. Cytokines : abnormalities in major depression and implications for pharmacological treatment. Human Psychopharmacology, n. July, p. 397–403, 2004.

CANI, P. D. et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, v. 56, n. July, p. 1761–1772, 2007.

CARABOTTI, M. et al. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, v. 28, n. 2, p. 203–209, 2015.

CLEUSIX, V. et al. Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS Microbiology Ecology, v. 63, n. 1, p. 56–64, 2008.

COLLINS, S. M.; BERCIK, P. The Relationship Between Intestinal Microbiota and the Central Nervous System in Normal Gastrointestinal Function and Disease. Gastroenterology, v. 136, n. 6, p. 2003–2014, 2009.

COLLINS, S. M.; SURETTE, M.; BERCIK, P. The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology, v. 10, n. 11, p. 735–742, 2012.

COSTELLO, E. K. et al. Bacterial community variation in human body habitats across space and time. Science, v. 326, n. 5960, p. 1694–1697, 2009.

CRYAN, J. F.; DINAN, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, v. 13, n. 10, p. 701–712, 2012.

CRYAN, J. F.; O’MAHONY, S. M. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterology and Motility, v. 23, n. 3, p. 187–192, 2011.

CRYAN, T. G. D. & J. F. Melancholic microbes : a link between gut microbiota and depression ? p. 713–719, 2013.

DE MAGISTRIS, L. et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. Journal of Pediatric Gastroenterology and Nutrition, v. 51, n. 4, p. 418–424, 2010.

DE THEIJE, C. G. M. et al. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. European Journal of Pharmacology, v. 668, n. SUPPL. 1, p. 70–80, 2011.

FERNANDES, J. et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutrition and Diabetes, v. 4, n. JUNE, 2014.

FORSLUND, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, v. 528, n. 7581, p. 262–266, 2015.

FOSTER, J. A.; NEUFELD, K. M. Gut – brain axis : how the microbiome influences anxiety and depression. Trends in Neurosciences, v. 36, n. 5, p. 305–312, 2013.

FOSTER, J. A.; RINAMAN, L.; CRYAN, J. F. Stress & the gut-brain axis : Regulation by the microbiome. Neurobiology of Stress, 2017.

FUNG, T. C.; OLSON, C. A.; HSIAO, E. Y. Interactions between the microbiota , immune and nervous systems in health and disease. Nature Publishing Group, v. 20, n. 2, 2017.

GIBSON, G. L. E. Y. Y. R.; ROBERFROID, M. B. Dietary Modulation of the Human Colonie Microbiota : Introducing the Concept of Prebiotics. The Journal of nutrition, v. 125, n. 6, p. 1401–12, 1995.

HAYLEY, S.; AUDET, M.; ANISMAN, H. Science Direct Inflammation and the microbiome : implications for depressive disorders. Current Opinion in Pharmacology, v. 29, p. 42–46, 2016.

HILL, C. et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, v. 11, n. 8, p. 506–514, 2014.

HOMBERG, J. R.; KOLK, S. M.; SCHUBERT, D. Editorial perspective of the Research Topic “Deciphering serotonin’s role in neurodevelopment”. Frontiers in Cellular Neuroscience, v. 7, n. November, p. 1–2, 2013.

HOOPER, L. V. Commensal Host-Bacterial Relationships in the Gut. Science, v. 292, n. 5519, p. 1115–1118, 2001.

HOOPER, L. V.; MACPHERSON, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology, v. 10, n. 3, p. 159–169, 2010.

HUTTENHOWER, C. et al. Structure, function and diversity of the healthy human microbiome. Nature, v. 486, n. 7402, p. 207–214, 2012.

IIZUMI, T. et al. Gut Microbiome and Antibiotics. Archives of Medical Research, v. 48, n. 8, p. 727–734, 2017.

JOFFRE, O. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunological Reviews, p. 234–247, 2009.

KELLER, J. et al. HPA axis in major depression : cortisol , clinical symptomatology and genetic variation predict cognition. Molecular Psychiatry, v. 2, n. May, p. 1–10, 2016.

LE BASTARD, Q. et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Alimentary Pharmacology and Therapeutics, v. 47, n. 3, p. 332–345, 2017.

LEY, R. E. et al. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences, v. 102, n. 31, p. 11070–11075, 2005.

LI, W. et al. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiology and Behavior, v. 96, n. 4–5, p. 557–567, 2009.

MADSEN, K. et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology, v. 121, n. 3, p. 580–591, 2001.

MANIAR, K. et al. A story of metformin-butyrate synergism to control various pathological conditions as a consequence of gut microbiome modification: Genesis of a wonder drug? Pharmacological Research, v. 117, p. 103–128, 2017.

MATSUOKA, K.; KANAI, T. The gut microbiota and inflammatory bowel disease. Seminars in Immunopathology, p. 47–55, 2015.

MAYER, E. A. Gut feelings: the emerging biology of gut–brain communication. Nature Reviews Neuroscience, v. 12, n. 8, p. 453–466, 2011.

MEDINI, D. et al. Microbiology in the post-genomic era. Nature Reviews Microbiology, v. 6, n. 6, p. 419–430, 2008.

MESSAOUDI, M. et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition, v. 105, n. 5, p. 755–764, 2011.

MILLER, A. H.; MALETIC, V.; RAISON, C. L. Inflammation and Its Discontents : The Role of Cytokines in the Pathophysiology of Major Depression. Biological Psychiatry, v. 65, n. 9, p. 732–741, 2008.

MOLLOY, C. A. Prevalence of chronic gastrointestinal symptoms in children with autism and. Autism, v. 7, n. 2, p. 165–171, 2003.

MULLER, C. L.; ANACKER, A. M. J.; VEENSTRA-VANDERWEELE, J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience, v. 321, n. November, p. 24–41, 2016.

NEYRINCK, A. M. et al. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutrition and Diabetes, v. 2, n. JANUARY, 2012.

NOBLE, E. E.; HSU, T. M.; KANOSKI, S. E. Gut to brain dysbiosis: mechanisms linking Western Diet consumption, the microbiome, and cognitive impairment. Frontiers in Behavioral Neuroscience, v. 11, n. January, p. 9, 2017.

O’MAHONY, S. M. et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Elsevier, v. 277, p. 32–48, 2014.

PARASHAR, A.; UDAYABANU, M. Gut microbiota: Implications in Parkinson’s disease. Parkinsonism & Related Disorders, 2017.

PHILIPPE, G. Gut Microbiome and Obesity. Annals of the American Thoracic Society, v. 14, n. November, p. 14–16, 2017.

RAMIAH, K.; REENEN, C. A. VAN; DICKS, L. M. T. Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis. Elsevier Research in Microbiology, v. 159, p. 470–475, 2008.

REA, K.; DINAN, T. G.; CRYAN, J. F. The microbiome: A key regulator of stress and neuroinflammation. Neurobiology of Stress, v. 4, p. 23–33, 2016.

RHEE, S. H.; POTHOULAKIS, C.; MAYER, E. A. Principles and clinical implications of the brain–gut–enteric microbiota axis. Nature Reviews Gastroenterology & Hepatology, v. 6, n. 5, p. 306–314, 2009.

RIDAURA, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, v. 341, n. 6150, 2013.

RUFF, W. E.; KRIEGEL, M. A. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends in Molecular Medicine, v. 21, n. 4, p. 223–244, 2015.

SAMUEL, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor , Gpr41. Proceedings Of The National Academy Of Sciences, v. 105, n. 43, p. 16767–16772, 2008.

SANDHU, K. V et al. Feeding the Microbiota-Gut-Brain Axis: Diet, Microbiome and Neuropsychiatry. Translational Research, 2016.

SANZ, Y. et al. Understanding the role of gut microbiome in metabolic disease risk. Pediatric Research, 2014.

SAULNIER, D. M. et al. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut microbes, v. 4, n. 1, p. 17–27, 2013.

SAVIGNAC, H. M. et al. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain, Behavior, and Immunity, v. 52, p. 120–131, 2016.

SCHMIDT, T. S. B.; RAES, J.; BORK, P. Review The Human Gut Microbiome : From Association to Modulation. Cell, v. 172, n. 6, p. 1198–1215, 2018.

SEKIROV, I.; RUSSELL, S.; ANTUNES, L. Gut microbiota in health and disease. Physiological Reviews, v. 90, n. 3, p. 859–904, 2010.

SENGUPTA, R. et al. The Role of Cell Surface Architecture of Lactobacilli in Host-Microbe Interactions in the Gastrointestinal Tract. Mediators Of Inflammation, [s.l.], v. 2013, p.1-16, 2013.

SERVIN, A. L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiology Reviews, v. 28, n. 4, p. 405–440, 2004.

SHOAF, K. et al. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infection and Immunity, v. 74, n. 12, p. 6920–6928, 2006.

SPANOGIANNOPOULOS, P.; TURNBAUGH, P. J. Broad collateral damage of drugs against the gut microbiome. Nature Reviews Gastroenterology & Hepatology, p. 1, 2018.

THOMAS, R. H. et al. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. Journal of Neuroinflammation, v. 9, n. 1, p. 695, 2012.

TRIPATHI, A. et al. The gut–liver axis and the intersection with the microbiome. Nature Reviews Gastroenterology & Hepatology, n. Box 1, 2018.

TURNBAUGH, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, v. 444, n. 7122, p. 1027–131, 2006.

UKENA, S. N. et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS ONE, v. 2, n. 12, 2007.

VÁZQUEZ-BAEZA, Y. et al. Impacts of the Human Gut Microbiome on Therapeutics. Annual review of pharmacology and toxicology, n. September 2017, p. 1–18, 2017.

WANG, J. et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. The International Society for Microbial Ecolog Journal, v. 9, n. 1, p. 1–15, 2015.

WESTFALL, S. et al. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cellular and Molecular Life Sciences, v. 74, n. 20, p. 3769–3787, 2017.

WU, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, v. 23, n. 7, p. 850–858, 2017.

XU, M. Q. et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World Journal of Gastroenterology, v. 21, n. 1, p. 102–111, 2015.

ZAREIE, M. et al. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut, v. 55, n. 11, p. 1553–1560, 2006.

Downloads

Publicado

2019-12-17

Como Citar

Magalhães, M. de C., Roque, A. T., & Taketani, N. F. (2019). MICROBIOMA INTESTINAL: SEU POTENCIAL COMO UM NOVO ALVO TERAPÊUTICO. Ensaios USF, 2(2), 14–31. https://doi.org/10.24933/eusf.v2i2.120

Edição

Seção

Ciências Biológicas e da Saúde