Análise computacional da captação de fosfato em Staphylococcus aureus e prospecção de potenciais inibidores

Autores

DOI:

https://doi.org/10.24933/e-usf.v9i1.466

Palavras-chave:

Docagem, Bioinformática, Resistência bacteriana

Resumo

Staphylococcus aureus é um patógeno oportunista associado a diversas infecções e à crescente resistência a antibióticos. O fosfato é essencial para processos celulares e, em S. aureus, sua captação ocorre por meio de transportadores do tipo ABC, nos quais a proteína SBP tem papel fundamental. Este estudo teve como objetivo identificar e caracterizar a proteína SBP de S. aureuspor meio de abordagens bioinformáticas, visando a identificação de possíveis ligantes capazes de interferir em sua função. Foram utilizados bancos de dados, plataformas online e ferramentas de bioinformática para caracterização estrutural e modelagem da proteína e seus ligantes. A análise revelou um transportador completo, sendo a proteína PstS responsável pela ligação e captação do fosfato. Sua estrutura, típica de proteínas SBP do tipo II, apresenta dois resíduos chave na interação com o fosfato: D116 e T171. A docagem molecular indicou que sulfato, nitrato e diversas moléculas fosfatadas apresentam afinidade com a PstS, com valores negativos de energia livre. Os resultados sugerem que compostos contendo fosfato podem interagir com a PstS, potencialmente interferindo no transporte de fosfato. Esses achados abrem caminho para o desenvolvimento de moléculas que comprometam a captação de fosfato por S. aureus, reduzindo sua viabilidade e potencial infeccioso.

Downloads

Não há dados estatísticos.

Referências

AGUENA, M. Análise transcricional do operon pst de Escherichia coli. Tese (Doutorado em Microbiologia) —Instituto de Ciências Biomédicas da Universidade de São Paulo. São Paulo, p. 25. 2007. DOI: https://doi.org/10.11606/T.42.2007.tde-30012008-094907

ARMENTEROS, José Juan Almagro et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Naturebiotechnology, v. 37, n. 4, p.420-423, 2019. DOI: https://doi.org/10.1038/s41587-019-0036-z

ARYA, N.; KAUR, DR. A. Molecular Docking: A Review Paper. International Journal of Innovative Research in Engineering & Management, p. 140–146, 1 fev. 2022. DOI: https://doi.org/10.55524/ijirem.2022.9.1.25

BARAK, Y.; VAN RIJN, J. Relationship between Nitrite Reduction and Active Phosphate Uptake in the Phosphate-Accumulating Denitrifier Pseudomonas sp. Strain JR 12. Applied and Environmental Microbiology, v. 66, n. 12, p. 5236–5240, dez. 2000. DOI: https://doi.org/10.1128/aem.66.12.5236-5240.2000

CASSAT, J. E.; SKAAR, E. P. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Seminars in Immunopathology, v. 34, n. 2, p. 215–235, 3 nov. 2011. DOI: https://doi.org/10.1007/s00281-011-0294-4

CHEUNG, G. Y. C.; BAE, J. S.; OTTO, M. Pathogenicity and virulence of Staphylococcus a u r e u s. Virulence, v. 1 2, n. 1, p. 5 4 7 – 5 6 9, 3 1 j a n. 2 0 2 1. D O I: https://doi.org/10.1080/21505594.2021.1878688

CHUDOBOVA, D. et al. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiology Letters, v. 351, n. 2, p. 195–201, 30 dez. 2013. DOI: https://doi.org/10.1111/1574-6968.12353

DEMONTE, A. M.; DIEZ A. D. M.; NALEWAY C.; IGLESIAS A. A.; BALLICORA M. A. Monofluorophosphate Blocks Internal Polysaccharide Synthesis in Streptococcus mutans. PLOS ONE, v. 12, n. 1, p. e0170483, 26 jan. 2017. DOI: https://doi.org/10.1371/journal.pone.0170483

FERRARIS, D. M.; SPALLEK R.; OEHLMANN W.; SIGH M.; RIZZI M. Crystal structure of the Mycobacterium tuberculosis phosphate binding protein PstS3. Proteins: Structure, Function, and Bioinformatics, v. 82, n. 9, p. 2268–2274, 24 mar. 2014. DOI: https://doi.org/10.1002/prot.24548

GAO, M.; SKOLNICK, J. A Comprehensive Survey of Small-Molecule Binding Pockets in Proteins. PLoS Computational Biology, v. 9, n. 10, p. e1003302, 24 out. 2013. DOI: https://doi.org/10.1371/journal.pcbi.1003302

GAUDREAULT, F.; CHARTIER, M.; NAJMANOVICH, R. Side-chain rotamer changes upon ligand binding: common, crucial, correlate with entropy and rearrange hydrogen bonding. Bioinformatics, v. 28, n. 18, p. i423–i430, 7 set. 2012. DOI: https://doi.org/10.1093/bioinformatics/bts395

GILMOUR, R. B. Phosphoric Acids and Phosphates. Kirk-Othmer Encyclopedia of Chemical Technology, p. 1–51, 12 jun. 2019. DOI: https://doi.org/10.1002/0471238961.1608151907011804.a01.pub3

GONZALEZ, D.; RICHEZ M.; BERGONZI C.; CHABRIERE E.; ELIAS M. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC type phosphate transporter from Clostridium perfringens. Scientific Reports, v. 4, n. 1, 16 out. 2014. DOI: https://doi.org/10.1038/srep06636

GUEDES, I. A. et al. New machine learning and physics-based scoring functions for drug discovery. Scientific Reports, v. 11, n. 1, 4 fev. 2021. DOI: https://doi.org/10.1038/s41598-021-82410-1

HALLGREN, Jeppe et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. BioRxiv, 2022. DOI: https://doi.org/10.1101/2022.04.08.487609

HOLLENSTEIN, K.; DAWSON, R. J.; LOCHER, K. P. Structure and mechanism of ABC transporter proteins. Current Opinion in Structural Biology, v. 17, n. 4, p. 412–418, ago. 2007. DOI: https://doi.org/10.1016/j.sbi.2007.07.003

HORSMAN, G. P.; ZECHEL, D. L. Phosphonate Biochemistry. Chemical Reviews, v. 117, n. 8, p. 5704–5783, 27 out. 2016. DOI: https://doi.org/10.1021/acs.chemrev.6b00536

KELLIHER, J. L. et al. Staphylococcus aureus Preferentially Liberates Inorganic Phosphate from Organophosphates in Environments where This Nutrient Is Limiting. Journal of Bacteriology, v. 202, n. 22, 31 ago. 2020. DOI: https://doi.org/10.1128/jb.00264-20

KROGH, A.; LARSSON, B.; VON HEIJNE, G.; SONNHAMMER, E.L.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journalof Molecular Biology, v. 305, n.3, p. :567-580, 2001. DOI: https://doi.org/10.1006/jmbi.2000.4315

LABOTKA, R. J.; A OMACHI. Erythrocyte anion transport of phosphate analogs. Journal of biological chemistry/The Journal of biological chemistry, v. 262, n. 1, p. 305–311, 1 jan. 1987. DOI: https://doi.org/10.1016/S0021-9258(19)75927-4.

LARKIN M.A., BLACKSHIELDS G., BROWN N.P., CHENNA R., MCGETTIGAN P.A., MCWILLIAM H., VALENTIN F., WALLACE I.M., WILM A., LOPEZ R., THOMPSON J.D., GIBSON T.J. AND HIGGINS D.G. Clustal W and Clustal X version 2.0. bioinformatics, v. 23, n. 21, p. 2947-2948, 2007. DOI: https://doi.org/10.1093/bioinformatics/btm404

LETUNIC, Ivica; KHEDKAR, Supriya; BORK, Peer. SMART: recent updates, new developments and status in 2020. Nucleic acids research, v. 49, n. D1, p. D458-D460, 2021. https://doi.org/10.1093/nar/gkaa937

LEWIS, VG.; WEEN, MP.; MCDEVITT, CA. The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma, v. 249, p. 919-942, 2012. DOI: https://doi.org/10.1007/s00709-011-0360-8

LEWINSON, O.; LIVNAT-LEVANON, N. Mechanism of Action of ABC Importers: Conservation, Divergence, and Physiological Adaptations. Journal of Molecular Biology, v. 429, n. 5, p. 606–619, mar. 2017. DOI: https://doi.org/10.1016/j.jmb.2017.01.010

LIMA, M. A.; RUDD T. R.; FERNING D. G.; YATES E. A. Phosphorylation and sulfation share a common biosynthetic pathway, but extend biochemical and evolutionary diversity of biological macromolecules in distinct ways. Journal of The Royal Society Interface, v. 19, n. 193, ago. 2022. DOI: https://doi.org/10.1098/rsif.2022.0391

LOCHER, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nature Structural & Molecular Biology, v. 23, n. 6, p. 487–493, jun. 2016. DOI: 10.1038/ nsmb.3216 DOI: https://doi.org/10.1038/nsmb.3216

LOGHMAN-ADHAM, M. Use of phosphonocarboxylic acids as inhibitors of sodium phosphate cotransport. General Pharmacology: The Vascular System, v. 27, n. 2, p. 305– 312, mar. 1996. DOI: https://doi.org/10.1016/0306-3623(95)02017-9

MIRDITA, M.; SCHÜTZE K.; MORIWAKI Y.; HEO L.; OVCHINNIKOV S.; STEINEGGER M. ColabFold: making protein folding accessible to all. Nature Methods, v. 19, p. 1–4, 30 maio 2022. DOI: https://doi.org/10.1038/s41592-022-01488-1

MLYNARCZYK-BONIKOWSKA, B. KOWALEWSKI C.; KROLAK-ULINSKA A.; MARUSZA W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. International Journal of Molecular Sciences, v. 23, n. 15, p. 8088, 1 jan. 2022. DOI: https://doi.org/10.3390/ijms23158088

MOLLICA, L.; BESSA L. M.; HANOULLE X.; JENSEN M. R.; BLACKLEDGE M.; SCHNEIDER R. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment. Frontiers in Molecular Biosciences, v. 3, 9 set. 2016. DOI: https://doi.org/10.3389/fmolb.2016.00052

NISHI, H.; SHAYTAN, A.; PANCHENKO, A. R. Physicochemical mechanisms of protein regulation by phosphorylation. Frontiers in Genetics, v. 5, 7 ago. 2014. DOI: https://doi.org/10.3389/fgene.2014.00270

O'BOYLE, Noel M.; BANCK M.; JAMES C. A.; MORLEY C.; VANDERMEERSCH T.; HUTCHISON G. R. Open Babel: An open chemical toolbox. Journal of cheminformatics, v. 3, p. 1-14, 2011. DOI: https://doi.org/10.1186/1758-2946-3-33

PAHONȚU, E. et al. Synthesis, Characterization, Crystal Structure and Antimicrobial Activity of Copper (II) Complexes with the Schiff Base Derived from 2-Hydroxy-4-Methoxybenzaldehyde. Molecules, v. 20, n. 4, p. 5771–5792, 2 abr. 2015.DOI: https://doi.org/10.3390/molecules20045771

PEGOS, V. R. Nascimento J. F.; SOBREIRA T. J. P.; PAULETTI B. A.; PAES-LEME A. Phosphate regulated proteins of Xanthomonas citri subsp. citri: a proteomic approach. Journal of proteomics, v. 108, p. 78-88, 2014. DOI: https://doi.org/10.1016/j.jprot.2014.05.005

PEREIRA, CT.; ROESLER, C.; FARIA, JN.; FESSEL, MR.; BALAN, A. Sulfate-Binding Protein (Sbp) from Xanthomonas citri: Structure and Functional Insights. Molecular Plant Microbe Interactions, v.30, p. 578-588, 2017. DOI: https://doi.org/10.1094/mpmi-02-17-0032-r

POPOVA, Y. THAYUMANAVAN, P. LONATI, E. AGROCHAO,M. THEVELEN, J.M. Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proceedings of the National Academy of Sciences, v. 107, n. 7, p. 2890–2895, 1 fev. 2010. DOI: https://doi.org/10.1073/pnas.0906546107

PRILUSKKY, J. FOLDER, CE. ZEEV-BEN-MORDEHAI, T. RYDBERG, EH. MAN, O. BECKMANN, JS. SILMAN, I. SUSSMAN, JL. FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, v. 21, n. 16, p. 3435-3438, 2005. DOI: https://doi.org/10.1093/bioinformatics/bti537

REECE, J. B., URRY, L. A., CAIN, M. L., WASSERMAN, S. A., MINORSKY, P. V. JACKSON, R. B. (2011). Membrane structure and function. In Campbell biology, 10th ed., p. 127. San Francisco, CA: Pearson.

REES, DC. JOHNSON, E. LEWINSON, O. ABC transporters: the power to change. Nature Reviews Molecular Cell Biology, v.10, p. 218-227, 2009. DOI: https://doi.org/10.1038/nrm2646

SALAMOV, A.; SOLOVYEVAND, V. Automatic annotation of microbial genomes and metagenomic sequences. In: LI, R.W. (ed.). Metagenomics and its applications in agriculture, biomedicine and environmental studies. New York: Nova Science Publishers, 2011. p. 61-78.

SAMPAIO, A.; PEGOS, VANESSA; OSHIRO, ELISA; BALAN, A. The periplasmic binding protein NrtT affects xantham gum production and pathogenesis in Xanthomona citri. FEBS Open Bio, v. 7, p. 1499-1514, 2017. DOI: https://doi.org/10.1002/2211-5463.12281

SANDOVAL, J.; SCOTTIE, E. Investigating the role of phosphate homeostasis in Staphylococcus aureus virulence. 2021. Tese (Mestrado em Microbiologia) - Universidade de Illinois Urbana-Champaign, Illinois

SANTOS, K. B. et al. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein–Peptide Data Set. Journal of Chemical Information and Modeling, v. 60, n. 2, p. 667–683, 10 jan. 2020. DOI: https://pubs.acs.org/doi/10.1021/acs.jcim.9b00905

SCHEEPERS, G. H.; LYCKLAMA A NIJEHOLT, J. A.; POOLMAN, B. An updated structural classification of substrate-binding proteins. FEBS Letters, v. 590, n. 23, p. 4393–4401, 23 out. 2016. DOI: https://doi.org/10.1002/1873-3468.12445

SEVRAIN, M. C.; BERCHEL, M.; COUTHON, H.; JAFFRÈS, Phosphonic acid: preparation and applications. Beilstein Journal of Organic Chemistry, v. 13, p. 2186–2213, 20 out. 2017. DOI: https://doi.org/10.3762/bjoc.13.219

SHIGI, Y. Inhibition of bacterial isoprenoid synthesis by fosmidomycin, a phosphonic acid-containing antibiotic. Journal of Antimicrobial Chemotherapy, v. 24, n. 2, p. 131–145, 1989. DOI: https://doi.org/10.1093/jac/24.2.131

SHINITZKY, M.; HAYMOVITZ R.; NEMAS M.; CAHANA N.; MAMILLAPALLI R.; SEGER R. Induction of intracellular signalling by cyclic glycerophosphates and their deoxy analogues. European Journal of Biochemistry, v. 267, n. 9, p. 2547–2554, 25 dez. 2001. DOI: https://doi.org/10.1046/j.1432-1327.2000.01265.x

SILVA, K.; PRAZERES R. A.; CURSELLI F.; CREMONESI A. S. Structural Characterization and Molecular Docking of Polyamine Transporters in Enterobacter Cloacae. SciMed Central, 16 maio 2023 DOI: https://doi.org/10.47739/2333-7109/1039

TANAKA, KJ.; SONG, S.; MASON, K.; PINKETT, HW. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in pathogenesis. Biochimica et Biophysica Acta (BBA) - Biomembranes, v. 1860, p.868-877, 2017. DOI: https://doi.org/10.1016/j.bbamem.2017.08.011

TER BEEK, Josy; GUSKOV, Albert; SLOTBOOM, Dirk Jan. Structural diversity of ABC transporters. Journal of General Physiology, v. 143, n. 4, p. 419-435, 2014. https://doi.org/ 10.1002/1873-3468.13935

TER-OVANESSIAN, L. M. P.; RIGAUD B.; MEZZETTI A.; LAMBERT J.; MAUREL M. Carbamoyl phosphate and its substitutes for the uracil synthesis in origins of life scenarios. Scientific Reports, v. 11, n. 1, 29 set. 2021. DOI: https://doi.org/10.1038/s41598-021-98747-6

TJADEN, B. A computational system for identifying operons based on RNA-seq data. Methods, v. 176, abr. 2019. DOI: https://doi.org/10.1016/j.ymeth.2019.03.026

UNNI, Samir et al. Web servers and services for electrostatics calculations with APBS and PDB2PQR. Journal of computational chemistry, v. 32, n. 7, p. 1488-1491, 2011. https:// doi.org/10.1002/jcc.21720

VON HEIJNE, G. The signal peptide. Journal of Membrane Biology, v. 115, p. 195-201, 1990. DOI: https://doi.org/10.1007/BF01868635

WALLQVIST A.; COVELL D. G. Docking enzyme-inhibitor complexes using a preference based free-energy surface. Proteins: Structure, Function, and Bioinformatics, v. 25, n. 4, p. 403–419, ago. 1996. DOI: https://doi.org/10.1002/(SICI)1097-0134(199608)25:4<403::AID-PROT1>3.0.CO;2-E

ZHANG, Y. et al. Discovery and structure of a widespread bacterial ABC transporter specific for ergothioneine. Nature Communications, v. 13, n. 1, 8 dez. 2022. DOI: https://doi.org/10.1038/s41467-022-35277-3

Downloads

Publicado

2025-04-22

Como Citar

Nascimento Chaves, B., Turner Lima de de Souza, T., & Cremonesi, A. (2025). Análise computacional da captação de fosfato em Staphylococcus aureus e prospecção de potenciais inibidores. Ensaios USF, 9(1). https://doi.org/10.24933/e-usf.v9i1.466

Edição

Seção

Ciências Biológicas e da Saúde